Shear-induced sedimentation in yield stress fluids

نویسندگان

  • Guillaume Ovarlez
  • François Bertrand
  • Philippe Coussot
  • Xavier Chateau
چکیده

Stability of coarse particles against gravity is an important issue in dense suspensions (fresh concrete, foodstuff, etc.). On the one hand, it is known that they are stable at rest when the interstitial paste has a high enough yield stress; on the other hand, it is not yet possible to predict if a given material will remain homogeneous during a flow. Using MRI techniques, we study the time evolution of the particle volume fraction during the flows in a Couette geometry of model density-mismatched suspensions of noncolloidal particles in yield stress fluids. We observe that shear induces sedimentation of the particles in all systems, which are stable at rest. The sedimentation velocity is observed to increase with increasing shear rate and particle diameter, and to decrease with increasing yield stress of the interstitial fluid. At low shear rate (‘plastic regime’), we show that this phenomenon can be modelled by considering that the interstitial fluid behaves like a viscous fluid – of viscosity equal to the apparent viscosity of the sheared fluid – in the direction orthogonal to shear. The behavior at higher shear rates, when viscous effects start to be important, is also discussed. We finally study the dependence of the sedimentation velocity on the particle volume fraction, and show that its modelling requires estimating the local shear rate in the interstitial fluid.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flow induced by a sphere settling in an aging yield-stress fluid

We have studied the flow induced by a macroscopic spherical particle settling in a Laponite suspension that exhibits a yield-stress, thixotropy and shear-thinning. We show that the fluid thixotropy (or aging) induces an increase with time of both the apparent yield stress and shear-thinning properties but also a breaking of the flow fore-aft symmetry predicted in Hershel-Bulkley fluids (yield-s...

متن کامل

Magnetorheology in an aging, yield stress matrix fluid

Field-induced static and dynamic yield stresses are explored for magnetorheological (MR) suspensions in an aging, yield stress matrix fluid composed of an aqueous dispersion of Laponite clay. Using a custom-built magnetorheometry fixture, the MR response is studied for magnetic field strengths up to 1 T and magnetic particle concentrations up to 30 v%. The yield stress of the matrix fluid, whic...

متن کامل

Shear induced drainage in foamy yield-stress fluids.

Shear induced drainage of a foamy yield-stress fluid is investigated using MRI techniques. Whereas the yield stress of the interstitial fluid stabilizes the system at rest, a fast drainage is observed when a horizontal shear is imposed. It is shown that the sheared interstitial material behaves as a viscous fluid in the direction of gravity, the effective viscosity of which is controlled by she...

متن کامل

An attempt to categorize yield stress fluid behaviour.

We propose a new view on yield stress materials. Dense suspensions and many other materials have a yield stress-they flow only if a large enough shear stress is exerted on them. There has been an ongoing debate in the literature on whether true yield stress fluids exist, and even whether the concept is useful. This is mainly due to the experimental difficulties in determining the yield stress. ...

متن کامل

Drop formation in non-Newtonian fluids.

We study the pinch-off dynamics of droplets of yield stress and shear thinning fluids. To separate the two non-Newtonian effects, we use a yield stress material for which the yield stress can be tuned without changing the shear thinning behavior, and a shear thinning system (without a yield stress) for which the shear thinning can be controlled over a large range, without introducing too much e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012